Статті
Полнолуние - стихотворение Катерины Васильевой
Ночь наступила, скрыв солнца лучи, Ушедшие в сумрак до самой зари. Ночь - это время мистических сил, И землю серебряный лик осветил. Богиня Селена, богиня Луна, Исида, Рогатого Бога жена... Она - королева сегодняшней ночи, Священная Мать, что гармонии хочет. И мощной энергией полной Луны Лесные деревья и травы полны. Серебряный свет их от сна пробудил, На праздник Богини он их пригласил. И группа людей на поляну пришла, И жрица магический круг создала, Призвав в него духов священных стихий И силу Великой Вселенской Любви. И все танцевали в священном пространстве, Создав атмосферу свободы и братства Во имя Великой Богини Луны, Чей лик благосклонно смотрел с вышины. И феи в магическом круге летали, И все позабыли былые печали, И в той атмосфере любви и тепла Они колдовали во имя Добра. В конце ритуала они причащались Едой, что наполнилась силой Луны, И, трапезой этой простой насладяся, Священный обряд завершили они. А ночь полнолуния всё продолжалась, Серебряный свет заливал всё вокруг, И дикие звери пришли на поляну, И брали еду они прямо из рук. И воздух пропитан волшебною силой Был ночью священной магической той, И все на поляне в ночи веселились Под яркой, торжественной, полной Луной. Катерина Васильева |

Читать другие стихотворения
Звёздная дорога - стихотворение Михаила Светлова
Первый раз приключилось такое. Видно, Солнцем, проникся насквозь. Мне с полярным сияньем цветное Сновиденье увидеть пришлось. То стремительным вихрем крученым, Удержать бы такие мгновенья. Михаил Светлов. |

Читать другие стихотворения
Полное лунное затмение 21 февраля
Затмение будет видно повсюду, где Луна будет над горизонтом, Северная и Южная Америка будут в наилучшей позиции для наблюдений. Европа, Африка и западная часть Азии также будут наблюдать затмение.
Хотя оно и произойдет как раз перед восходом солнца, в утренние часы 21 февраля.
Учитывая все сказанное, включая ясную погоду, можно сказать, что примерно три миллиарда людей смогут наблюдать, как Луна скроется в тени Земли.
Общая продолжительность затмения составит 51 минуту, оно начнется в 6:01по московскому времени и 5:01 по Киевскому.
Поскольку часть солнечного света, освещающего Землю, рассеивается и отражается атмосферой, тень Земли не совсем черна. Обычно есть медные и оранжевые оттенки, придающие Луне вид жуткого накаляющегося шара.

В дополнение. Луна во время затмения будет расположена в небе около Сатурна и яркой голубой звезды Регул в созвездии Льва. Действие в небе должно создать красивый треугольник из полностью затмеваемой Луны, видимой невооруженным глазом планеты и ярчайшей из звезд.
Мы летим навстречу друг другу
Мы летим навстречу друг другу; Столкновения неизбежны... Я внимаю каждому звуку Долгожданных весенних гроз, Дай мне руку, Подставь мне плечи: В беспросветности я догораю. И со мной догорают свечи В бесконечном потоке слез. Мы летим - сердце бьется сильнее. Все, что было таким желанным, Мы летим навстречу друг другу Мы летим навстречу друг другу, Березюк Игорь Владимирович |

Читать другие стихотворения
Я всё нашел в твоих глазах, мерцанье звёзд и глубину!
Я всё нашел в твоих глазах, Мерцанье звезд и глубину, Ведь я искал тебя одну, Ведь я любил всегда тебя одну… И жизнь моя , как капелька росы, Среди блуждающих светил, И жизнь моя , как капелька росы, И к солнцу вознеся свою молитву, Я видел всё в твоих глазах, И жизнь моя , как капелька росы, Березюк Игорь Владимирович |

Читать другие стихотворения
История исследований и минералогия лунной поверхности
Данная статья включает в себя выдержки из научно-исследовательской работы МАН (Малая Академия Наук) члена астрономического кружка Харьковского планетария Гурового Кирилла.
Введение

На поверхности Луны присутствуют и целые цепи гор, их высота достигает 6000 м. Они расположены бессистемно.
Происхождение Луны
Теория «захвата» Землей Луны популярна среди ученых, хотя на первый взгляд она кажется маловероятной, поскольку при захвате, Луна должна была бы потерять большую энергию, равную Gm1m2/2c, где m1 и m2 – массы Земли и Луны, G – гравитационная постоянная, c – большая полуось орбиты (среднее расстояние между Землей и Луной). В защиту этого предположения выступал Кадоган (Cadogan, 1983 г.). Однако, Гоулд (Gold, 1975) оспаривает гипотезу захвата на том основании, что подобный процесс совершенно неправдоподобен, хотя теоретически и возможен. Тэйлор (Taylor, 1987) считает: "Гипотезы, согласно которым Земля захватила уже сформировавшуюся Луну, больше не рассматриваются всерьез. Во-первых, они сталкиваются с серьезнейшими динамическими проблемами, во-вторых - не объясняют экзотическую геохимию Луны".
Трудно даже представить, каким образом скорость движения Луны могла уменьшиться настолько, чтобы "захват" ее Землею стал возможен. Но даже если бы ученым и удалось открыть этот механизм, главный вопрос - как образовалась Луна до захвата - оставался бы открытым.
Теорию отделения Луны пытались недавно возродить идеей о том, что момент инерции Земли уменьшился, когда ее вещество разделилось на металлическое ядро и силикатную мантию; от этого возросла скорость вращения, что и заставило часть вещества оторваться в качестве самостоятельного тела. Но все равно для этого требуется высокая начальная скорость вращения Земли, чтобы гигантская энергия вращения затем перешла в тепло земных недр, а большая часть момента была бы унесена из системы Земля – Луна, например, путем выброса значительной массы. Проблемы, связанные с сохранением энергии и момента импульса, делают теорию отделения Луны от Земли маловероятной. Последние химические данные, особенно в отношении железа и редкоземельных элементов, показали, что состав лунной поверхности существенно отличается от земной поверхности. Поэтому теорию отделения сейчас не рассматривают всерьез.
Лунная минералогия

Лишь через 113 лет, в 1937 г., российский студент Кирилл Станюкович (будущий доктор наук и профессор) доказал, что при ударах метеоритов с космическими скоростями происходит взрыв, в результате которого расплавляется не только метеорит, но и часть пород в месте удара. Взрывная теория Станюковича разрабатывалась в 1947-1960 гг. им самим, а потом другими исследователями. [приложение 2]
Экспедиции американских астронавтов на Луну (1969-1972 гг.), посадки советских автоматических станций «Луна-16, -20 и -24» (1970-1976 гг.), доставлявших на Землю лунный грунт привели к возникновению новой науки - лунной минералогии. Лунные минералы попали в руки специалистов. Это позволило минерологам сравнивать их строение и состав с земными минералами и метеоритами.
Прежде всего, по содержанию радиоактивных изотопов был определен возраст лунных пород. Древнейшие из них, как показало исследование урано-свинцовым методом, образовались 4,46 млрд. лет назад. Похожие результаты дало применение стронциевого метода. Но ведь почти таков же (4,6 млрд. лет) возраст древнейших горных пород Земли и метеоритов. Значит, именно тогда, около 4,5 млрд. лет назад, сформировалась Солнечная система, в том числе Земля, Луна и те тела, осколки которых прилетают к нам в виде метеоритов. Анализ лунных минералов позволил понять, в чём состоят различия между материками и морями на Луне. Выяснилось, что моря покрыты вулканическими породами, в основном базальтами. Они имеют округлую форму, ровную поверхность, об относительной молодости которой говорит не только радиоактивный анализ, но и сравнительно малое число кратеров, образованных ударами крупных метеоритов. Все это показывает, что «моря» - результат грандиозных лавовых излияний из недр Луны, вызываемых ударами об её поверхность небольших астероидов.
1) морские базальты, более или менее богатые железом и титаном;
2) материковые базальты, богатые камнем, редкоземельными элементами и фосфором;
3) алюминиевые материковые базальты – возможный результат ударного плавления;
4) магматические породы, такие, как анортозиты, пироксениты и дуниты.
Поверхность Луны

Плоские днища и центральные горки образуются за счет динамической отдачи в момент взрыва и перераспределения ударных расплавов и последующего инициированного вулканизма. Вещество лучей состоит преимущественно из местного материала, выбитого вторичными кратерами, и в меньшей мере присутствует вещество, выброшенное непосредственно из центрального кратера. С увеличением возраста кратеров их лучи темнеют и исчезают, смешиваясь с реголитом, их кромки валов, террасы и вторичные кратеры сглаживаются и расплываются, днища мельчают, валы разбиваются последующими тектоническими деформациями и перекрываются новыми выбросами - пока кратеры не исчезают совсем. При этом в первую очередь стираются меньшие кратеры, а от первых сотен миллионов лет лунной истории кратеров почти не сохранилось. Несомненно, что интенсивность кратерообразования в начале лунной истории в сотни раз превосходила современную.
БАССЕЙНЫ – это круглые впадины, окруженные несколькими (реже одиночными) кольцевыми хребтами с поперечниками свыше 250 - 300 км, частично или полностью заполненные лавами. Самое молодое и наименее модифицированное из таких образований - это Море Восточное, где лучше всего видны первоначальные структуры бассейнов. Базальты Моря Восточного заполняют центральную часть впадины, окруженной тремя основными кольцевыми хребтами с поперечниками 480 км, 620 км и 930 км. Промежуток между лавами и внутренним кольцом и часть пространства между внутренним и средним кольцом заполнены так называемой бугристо-морщинистой фацией, которая образована ударными расплавами, либо продуктами первой фазы инициированного вулканизма. Между средним и внешним хребтом среди разносортных лав видны остатки с радиально-концентрическими структурами выбросов. Сплошной покров выбросов из этой структуры прослеживается на расстоянии 500 - 1000 км от внешнего хребта, а их объем составляет не менее 1 - 2 млн. км3. Это огромное поле субпаралельных и ветвящихся или переплетающихся валов и борозд, в целом субрадиальных или субконцентрических к центральной впадине. Ряд специфических структур и рисунков, образуемых ими (струйчатые, колосовидные, петлевидные, эшелонированные и др.), говорят о том, что материал выпадал сплошными массами по очень пологим траекториям и после выпадения продолжал движение по поверхности в жидком состоянии. Некоторая часть субрадиальных и субконцентрических структур, видимо, образована тектоническими разрывами, также связанными с формированием кратера. За пределами сплошного выброса рассеяны пятна и полосы дисперсного выброса, а также бесчисленные гроздья и цепочки вторично – ударных кратеров с поперечниками до 20 км: практически они встречаются по всей поверхности Луны, перекрываясь лишь морскими базальтами. Более древние бассейны (впадины Моря Дождей, Нектара и др.) характеризуются более выровненными и «затопленными» центральными частями и менее резкими кольцевыми хребтами. Скульптура выбросов с увеличением возраста бассейна быстро расплывается и исчезает, вероятно, за счет перемещения рыхлого вещества выбросов при лунотрясениях в местные понижения, так что у большинства бассейнов поля выбросов оконтурить не удается. Но при этом становится более четко различимой радиально-концентрическая блоковая структура кольцевых хребтов и прилегающей местности. Некоторые бассейны, особенно на обратной стороне, остались незаполненными базальтами. Раньше их называли особым термином «талассоиды», но они, в принципе, не отличаются от остальных бассейнов. Самые древние из них определяются с большим трудом, и часть их, очевидно, осталась нераспознанной. С бассейнами связаны специфические материковые образования типа формации Кейли. Их породы заполняют понижения с прихотливыми границами, образуя «озера» с ровной поверхностью, как и темные базальты морей. Располагаются они обычно в пределах зон выброса крупных бассейнов, явно перекрывая эти выбросы, но абсолютный временной интервал между выпадением выбросов и образованием «озер» остается неизвестным. Такие покровы могли быть образованы или лавами, родившимися после выпадения выброса, или же отлагаться из флюидизированных туч обломков, перемещавшихся после взрывов астероидов медленнее, чем баллистические выбросы.
[...]
Выводы
Список литературы
1. Жанлука Ранцини, Космос. Сверхновый атлас вселенной. – Москва «Эксмо», 2004
2. Евсюков М.М., Александров Ю.В. Химия и геология планет. – Харьков, 2000
3. Шкуратов Ю.Г. Луна далекая и близкая. – Харьков 2006
4. Энциклопедия для детей «Аванта +», астрономия (том 8). – Москва, 2003
Источники сети Интернет:
1. http://ru.wikipedia.org (раздел Луна).
2. http://pbnet.ru
3. http://selena.sai.msu.ru
4. http://sunsys.narod.ru
5. http://www.astronet.ru
6. http://www.astrolab.ru/cgi-bin/manager2.cgi?id=33&num=493
7. http://www.skeptik.net
8. http://lunar.org.ru/5.html
9. http://full-moon.ru/history.html
10. http://www.astron-nomos.nm.ru
Вы можете скачать или просмотреть работу полностью.
Опубликовано 7 февраля 2008 года.
Фотографии Луны:
Пепельный свет Луны, Луна в цвете, Серп Луны, Альпийская долина на Луне, лунное затмение
Зачем человеку звёзды на небе

Казалось бы, человеку не обязательно видеть звёзды на небе — без них вполне можно прожить. В космосе множество разных объектов и явлений, но мы их не замечаем без специальной техники. Почему же наш глаз видит звёзды, причем не две, не двести и не миллиарды, а несколько тысяч? Существует ли этому разумное объяснение?
Одно из незабываемых впечатлений в жизни каждого человека — ясное ночное небо, в чёрной глубине которого сияют тысячи огоньков — звёзды. Они так прекрасны, что даже не возникает желания задуматься — а почему мы их видим? «Ну, как же иначе? — удивитесь вы. — Разве можно не видеть звёзд?» Очень даже можно! Яркость звёзд чрезвычайно мала. Даже у самых ярких среди них она находится вблизи порога чувствительности нашего зрения. Будь этот порог чуть-чуть выше, и на небе не было бы ни одной звезды. И при этом наше дневное зрение практически не потеряло бы своего качества. Днём мы бы просто не заметили перемены в своем зрении. Тем не менее эволюция зачем-то дала нам способность видеть звёзды. Но зачем? Не для того же, чтобы некоторые из нас занимались астрономией…
Известно, что глаза далеких диких предков человека практически не отличались от наших. И не только глаза: не отличалась и вся центральная нервная система, на периферийной части которой глаза расположены. Значит, наши далёкие предки тоже видели звёзды. Но в повседневной жизни троглодита звёзды уж точно не играли никакой роли. Зачем же Homo sapiens (и не он один) видит эти ночные огоньки? Чтобы мое недоумение было понятнее, напомню: чувствительности нашего зрения не хватает, например, чтобы увидеть миллионы звёздных систем — галактик. С точки зрения эволюционной теории, это вполне закономерно: далёкие галактики никак не влияли на жизнь наших предков. Но мы не замечаем на небе даже астероидов, хотя сотни тысяч этих опасных микропланет носятся буквально у нас под носом, заполняя всю Солнечную систему. А звёзды глаз человека почему-то видит, хотя они ничем нам не угрожают и вообще (да простят меня астрологи!) не оказывают на нас никакого влияния. Способность видеть звёзды, казалось бы, никак не облегчает нам борьбу за существование. Или все-таки облегчает?

Один из важнейших принципов биологической эволюции — экономия ресурсов. Повышение чувствительности наших рецепторов, и соответствующее улучшение органов чувств — зрения, слуха или обоняния — требует дополнительных ресурсов, поэтому их чувствительность не поднимается выше того уровня, который обеспечивает необходимые эволюционные преимущества. На протяжении миллионов лет глазу довелось испытать множество метаморфоз, пока он научился видеть и днём и ночью: природе пришлось изрядно «потрудиться», создавая механизмы адаптации к яркому солнечному свету и механизмы регистрации слабого света звёзд. Неужели звёздная россыпь на ночном небе имела жизненное значение для предков человека и подобных ему животных?
Оказывается, имела. И вот почему. Ясно, что способность видеть не только днём, но и ночью — причем не только при луне, но и в безлунную ночь, когда единственным источником света служит само ночное небо, — дает видам важные преимущества в борьбе за существование. Ведь это только на первый взгляд ночное небо совершенно чёрное. Каждый, кто выглядывал ночью из палатки, знает, что ночное небо не абсолютно тёмное — оно слабо, но вполне заметно светится! Чтобы в безлунную ночь различать дорогу и силуэт врага или жертвы, минимальная чувствительность зрения должна соответствовать яркости ночного неба.
Астрономы установили, что примерно половина излучения ночного неба — это рассеянный свет звёзд. В большинстве своём это звёзды нашей Галактики, причём не все, а только те, что удалены от Земли не более чем на 3000 световых лет (более далекие звёзды скрыты за облаками межзвёздной пыли). А таких близких и видимых звёзд около 100 миллионов. Примерно столько же в сетчатке нашего глаза светочувствительных элементов — палочек. Поэтому далекие звёзды не видны по отдельности, а сливаются в сплошной темно-серый фон. Попробуем оценить, сколько звёзд в виде отдельных ярких точек на этом фоне сможет увидеть наш глаз.

Следует учесть, что разрешающая способность глаза ночью ниже, чем днём. Причин две. Во-первых, при слабом свете зрачок глаза расширяется, и начинают сказываться дефекты роговицы и хрусталика, их отличие от идеальной оптической формы. Так бывает с фотоаппаратом, когда его при полностью открытой диафрагме не удается навести на резкость. Во-вторых, при низкой освещенности мозг суммирует сигналы от нескольких соседних палочек, чтобы результирующий сигнал стал заметнее: поскольку качество картинки невысокое, эффективный размер «пикселей» можно укрупнить.
Существует несложные способ убедиться, что наш глаз искусно пользуется приемом «чувствительность за счёт качества». Как известно, ясное и чёткое изображение возникает только в центре поля зрения. Если мы смотрим на предмет в упор, то видим его мельчайшие детали, но стоит немного отвести взгляд в сторону, как изображение расплывается, и мелкие детали становятся неразличимы. Зато недостаток чёткости «бокового зрения» компенсируется его большей чувствительностью к свету: часто тусклую звезду, невидимую «в упор», легко различить боковым зрением, если немного отвести взгляд в сторону.
Итак, на каждый зрительный элемент сетчатки нашего глаза попадает свет от нескольких далеких звёзд, примерно от дюжины. Чтобы изображение близкой звезды проявилось на этом фоне как яркая точка, она должна освещать глаз в десятки раз сильнее этой группы далеких звёзд, то есть в сотни раз сильнее, чем каждая из них в отдельности. Зная основной фотометрический закон — освещенность падает обратно пропорционально квадрату расстояния от источника света, — нетрудно вычислить, что такая «заметная» звезда должна быть раз в 20–30 ближе, чем далекие 100 миллионов звёзд фона. Много ли таких близких звёзд, да и есть ли они вообще?
Если радиус сферы уменьшить, для определенности скажем, в 25 раз, то её объем уменьшится в 253 ≈ 15 тысяч раз. Легко видеть, что из 100 миллионов звёзд, равномерно распределенных в пространстве и освещающих наше небо, в этой малой сфере вокруг нас остаётся около 7000 светил. Именно они должны быть заметны нашему глазу как яркие точки на однородном фоне ночного неба. Удивительно, но наш приблизительный расчет оказался весьма точен: именно столько звёзд видит здоровый глаз человека на чистом загородном небе. Вот так биологическая эволюция и борьба с ночными хищниками за свое существование подарила нам в итоге радость созерцания красоты звёздного неба.

Не такими уж бесполезными оказались звёзды. Они действительно освещают наш ночной мир. А теперь давайте пофантазируем. Нам, людям, ведущим дневной образ жизни, для пассивной защиты от хищников достаточно глаз, различающих несколько тысяч звёзд. Но ведь существуют ночные хищники, для которых тёмное время суток — это время активной жизни. Их глаза много чувствительнее наших. Вот бы увидеть ночное небо глазами совы!
Оказывается, в принципе, это возможно: уже не раз звучали предложения переделать глаз человека, чтобы он стал в сотни раз чувствительнее к свету. Дело в том, что природа не использовала всех своих возможностей. Человеческий глаз можно значительно улучшить. Для этого нужно заменить простой хрусталик качественной многослойной линзой большего диаметра и перевернуть светочувствительную поверхность глаза — сетчатку, которая сейчас почему-то расположена у нас задней стороной к свету. После этого мы без труда сможем увидеть миллионы звёзд Млечного Пути и даже другие далёкие галактики. Без всякого телескопа! Правда, человеку со «звёздными» глазами днём, скорее всего, придется ходить в плотных тёмных очках, спасаясь от яркого солнечного света.
Впрочем, не будем спешить. Возможно, природа когда-нибудь сама изберет этот путь. Если человечество начнет расселяться по планетам Солнечной системы, то на далёких от Солнца планетах смогут жить люди только со «звёздными» глазами.
А пока… Чтобы насладиться видом звёздного неба, нужно чуть-чуть больше узнать об устройстве глаза и использовать некоторые нехитрые приемы.
Наш глаз — поразительный оптический прибор. Он совершенствовался миллионы лет и стал очень чувствительным и зорким. Восприимчивость глаза к слабому свету выше, чем у самой хорошей фотопленки и практически такая же, как у дорогой цифровой фотокамеры. Ночью глаз видит слабые звёзды, а днём спокойно переносит яркий солнечный свет, от которого вмиг чернеет любая фотопленка. И только очень дорогие объективы могут тягаться с нашим глазом по четкости изображения: здоровый глаз различает эти две точки двоеточия ( : ) в стандартном печатном тексте с расстояния 3–5 м. А угловое расстояние между ними — всего 1–2 угловых минуты!
А с дорогой техникой и обращаться надо осторожно. Яркий солнечный свет вреден для глаз: их надо прятать за темными стеклами очков. Ни в коем случае не смотреть прямо на Солнце, особенно через оптические приборы — бинокли и телескопы. Иначе недолго потерять зрение!
К наблюдениям ночного неба глаза нужно подготовить. Выйдя из ярко освещённой комнаты на тёмную улицу, сразу можно и не разглядеть звёзды. Не торопитесь, отойдите от фонарей и ярких окон и подождите минут пять-семь, пока глаза привыкнут к темноте, и на небе начнут «появляться» сначала яркие, а затем все более тусклые звёзды.

Не только человек видит небо — его видят все животные и даже растения; но все — по-разному. У каждого живого существа основой зрения служат светочувствительные клетки. Но в остальном конструкция глаз различается очень сильно. У растений и некоторых простых животных вообще нет глаз как отдельного органа. Например, у дождевого червя одиночные светочувствительные клетки распределены по всей поверхности тела. Поэтому он не видит изображения, а лишь чувствует, с какой стороны от него светлее. Днём он может заметить свет неба и определить, что выбрался на поверхность земли, но не более того. А вот на теле пиявки небольшие скопления зрительных клеток окружены с трех сторон темным непрозрачным пигментом; поэтому к зрительным клеткам свет проникает только с одной стороны, и пиявка может заметить движение жертвы или хищника, а возможно, и бегущие по небу облака.
Даже у высокоразвитых животных глаза сильно различаются чувствительностью к свету и четкостью восприятия. Например, у ночных животных — крыс или сов — зрение намного чувствительнее, чем у человека; для них небо усеяно звёздами гораздо гуще, чем для нас.
Зато по остроте зрения у человека почти нет соперников. Пожалуй, в этом отношении ему не уступают лишь обезьяны, крысы и хищные птицы. А вот кошка, курица или лошадь видят во много раз менее чётко. Что уж говорить о хомячке или пчеле, которые не могут различить даже дисков Луны и Солнца: эти светила кажутся им такими же «точками», как нам звёзды или планеты. Кстати, обычный человек не отличит звёзду от планеты: они нам кажутся точками одинакового размера. Но встречаются счастливцы с особенно острым зрением, которые видят спутники Юпитера и даже Венеру в форме серпа (ведь у нее те же фазы, что и у Луны).
С другой стороны, мелкая пчела или стрекоза, хоть и не могут похвастаться особенно резким зрением, зато различают движения в 10–20 раз более быстрые, чем может различить человек. Для человека полет по небу метеора или вспышка молнии длятся мгновение, а для стрекозы это целый кинофильм.
Так что не будем особенно восторгаться своим зрением, а лучше станем его беречь и тренировать. Ведь оно дарит нам такое наслаждение, как созерцание звёздного небосвода!
Источник:
Читатей также статьи:
- Созвездия и звёздные узоры. Подвижная карта звёздного неба
- Созвездия, которых сейчас нет. Путешествие по страницам старинных звездных карт
Новостной выпуск 29 марта 2006г посвящённый солнечному затмению

50-см телескоп, построенный Сергеем Плаксой из г.Краматорска

Падучая звезда - посвящается Тунгусскому феномену
Ты думаешь: в море упала она, Звезда голубая, - до самого дна Дошла и зарылась в зыбучий песок, Из чуждого мира случайный кусок... Не глыба, не плотный объемистый ком, И вмиг раскалив окружающий газ, Пучины воздушные глубже морских, Угасла недаром: в бесчисленный круг Пусть будет недолог твой жизненный путь, Драверт П.Л. |

Читать другие стихотворения
